Fiscal Policy versus Monetary Policy in an R&D Growth Model with Money in Production

Hong Bei

National University of Singapore

May 2014

Agenda

- Motivation
- Overview
- Key findings and contributions

Motivation

- Source of tax revenue
- ullet Distortionary tax instruments: au_k and inflation tax
- Countries $\theta=-0.825\%$ $\tau_k=65\%$ in Austria, $\theta=0.075\%$ $\tau_k=34\%$ in United Kingdom,
- Countries $\theta=19.75\%$ $\tau_k=23\%$ in China, and $\theta=25.05\%$ $\tau_k=15\%$ in Cambodia.
- Optimal tax instruments?

Motivation

- Palivos and Yip (1995) —— τ_k < inflation tax
- \bullet Ho, Zeng and Zhang (2007)——inflation tax $<\tau_c$
- Cooley and Hansen (1991)—— $\tau_k/\tau_l < \tau_c$ and inflation tax

Motivation

- Why money in production
- Empirical support: Sinai and Stokes (1972) (Cobb-Douglas production function, $\varepsilon=0.17$) Khan and Kouri (1975)
- Fischer (1974): facilitate production, economize the use of other inputs, and spares the cost of running short of cash
- Shaw et al. (2005): $x_i = k_i^{\gamma} m_i^{1-\gamma}$
- Why R&D models
- Chu and Lai (2013)–1% increase in inflation would decrease R&D share of GDP by 0.026%
- Why monetary policy versus fiscal policy
- Monetary policy is an important determinant of the fiscal multiplier Canova and Pappa (2011)

Agenda

- Motivation
- Overview
- Key findings and contributions

Overview

- Fiscal policy & Monetary policy (τ_c, τ_k, θ) in variety expansion R&D model with money-in-production.
- Growth and welfare effects
- Optimal combination of different policies

Overview

Recall of important equations

•
$$x_i = k_i^{\gamma} m_i^{1-\gamma}$$

•
$$x_i = k_i^{\gamma} m_i^{1-\gamma}$$

• T , τ_k , $\theta = \frac{dot\{\tilde{M}\}}{\tilde{M}}$

•
$$G = xY$$

Agenda

- Motivation
- Overview
- Key findings and contributions

- In the presence of lump-sum tax: τ_k and θ has a negative growth and innovation effect
- $i\uparrow$ overall negative effect on growth and R&D Chu and Cozzi (2012)

- $au_k^* = 1 rac{1-x}{lpha(lpha\gamma+1-lpha)}$, heta approaches to ho (i approaches to 0)
- Welfare goes up as inflation decreases and is maximized as the nominal interest rate approaches zero, Chu and Lai (2013)
- U.S., 0.25%, Japan 0.1%, since Dec 2008

- In the absence of lump-sum tax
- Table 1:Costs under equalized government expenditure share.

- ullet γ affects optimal capital income tax and money growth rate
- $x_i = k_i^{\gamma} m_i^{1-\gamma}$
- $\frac{\alpha^2(1-\gamma)\theta}{\sigma_g+\rho+\theta-g} = x \alpha^2\gamma\tau_k$

- We contribute to this literature by incorporating MIP into a standard R&D-driven growth framework with horizontal innovation
- The ranking of inflation tax and capital income tax may differs in relation to its aim and how developed is the financial system

Policy discussion

- Milton Friedman (1969) "different productive activities may differ in cash-intensity, just as they differ in labor or land intensity"
- ullet Sinai and Stokes (1972) $\gamma=0.775$
- higher γ : capital income tax low γ : inflation tax
- Further estimate money intensity for country-specific studies

• Thank you!